在光速下穿越銀河系需要10萬年的時間,但飛船內(nèi)的宇航員實際感覺過去了多久?
It takes 100k years to travel the Milky way at LS, but how long would it feel to the actual astronauts inside the ship to travel across?譯文簡介
原文+紅迪討論,建議在夜深人靜思考宇宙到底有多大,人從哪里來人到哪里去的時候觀看
正文翻譯
Right now, there are only three things limiting how far our spacecrafts can take us in the Universe: the resources we devote to it, the constraints of our existing technology, and the laws of physics. If we were willing to devote more resources to it as a society, we have the technological know-how right now to take human beings to any of the known planets or moons within the Solar System, but not to any obxts in the Oort cloud or beyond. Crewed space travel to another star system, at least with the technology we have today, is still a dream for future generations.
目前,只有三個要素限制了我們的太空船能把我們帶到宇宙的多遠處:我們投入的資源,我們現(xiàn)有技術(shù)的限制,以及物理定律。如果我們愿意作為一個整體把更多的資源投入其中,我們現(xiàn)在就有能力,可以把人類帶到太陽系內(nèi)任何已知的行星或衛(wèi)星上,但不能帶到奧爾特云或更遠的任何星體上。載人太空旅行到另一個恒星系,至少以我們今天的技術(shù),仍然是子孫后代才能實現(xiàn)的夢想。
But if we could develop superior technology — nuclear-powered rockets, fusion technology, matter-antimatter annihilation, or even dark matter-based fuel — the only limits would be the laws of physics. Sure, if physics works as we understand it today, traversable wormholes might not be in the cards. We might not be able to fold space or achieve warp drive. And the limitations of Einstein’s relativity, preventing us from teleporting or traveling faster than light, might not ever be overcome. Even without invoking any new physics, we’d be able to travel surprisingly far in the Universe, reaching any obxt presently less than 18 billion light-years away. Here’s how we’d get there.
但是,如果我們能夠開發(fā)出更先進的技術(shù)——核動力火箭、核聚變技術(shù)、反物質(zhì)湮滅,甚至暗物質(zhì)燃料——唯一的限制就是物理定律。當(dāng)然,如果物理學(xué)像我們今天所理解的那樣起作用,那么可穿越的蟲洞可能就不存在了。我們可能無法折疊空間或?qū)崿F(xiàn)曲率引擎。愛因斯坦相對論的局限性,阻止我們以比光速更快的速度傳送或旅行,可能永遠也無法克服。但即使不借助任何新的物理學(xué)理論,我們也能在宇宙中出人意料地旅行,到達目前距離我們不到180億光年的任何物體。這是關(guān)于我們?nèi)绾蔚竭_那里的解釋:
原創(chuàng)翻譯:龍騰網(wǎng) http://nxnpts.cn 轉(zhuǎn)載請注明出處
但是,如果我們能夠開發(fā)出更先進的技術(shù)——核動力火箭、核聚變技術(shù)、反物質(zhì)湮滅,甚至暗物質(zhì)燃料——唯一的限制就是物理定律。當(dāng)然,如果物理學(xué)像我們今天所理解的那樣起作用,那么可穿越的蟲洞可能就不存在了。我們可能無法折疊空間或?qū)崿F(xiàn)曲率引擎。愛因斯坦相對論的局限性,阻止我們以比光速更快的速度傳送或旅行,可能永遠也無法克服。但即使不借助任何新的物理學(xué)理論,我們也能在宇宙中出人意料地旅行,到達目前距離我們不到180億光年的任何物體。這是關(guān)于我們?nèi)绾蔚竭_那里的解釋:
原創(chuàng)翻譯:龍騰網(wǎng) http://nxnpts.cn 轉(zhuǎn)載請注明出處
When we take a look at conventional rockets that we launch from Earth, it surprises most people to learn that they barely accelerate more rapidly than gravity accelerates us here on Earth. If we were to jump or drop from a high altitude, Earth’s gravity would accelerate us towards our planet’s center at 9.8 m/s2 (32 ft/s2). For every second that passes by while we’re in free-fall, so long as we neglect outside forces like air resistance, our speed increases in the downward direction by an additional 9.8 m/s (32 ft/s).
當(dāng)我們看一看我們從地球發(fā)射的傳統(tǒng)火箭時,大多數(shù)人驚訝地發(fā)現(xiàn),它們的加速度幾乎沒有地球引力加速我們的速度快。如果我們從高空跳下,地球的引力會將我們以9.8米/s2 (32英尺/s2 )的加速度向我們的星球中心移動。當(dāng)我們自由落體時,每過一秒,只要我們忽略空氣阻力等外力,我們向下的速度就會增加9.8米/秒(32英尺/秒)。
The acceleration that we experience due to Earth’s gravity is known as “1g” (pronounced “one gee”), which exerts a force on all obxts equal to our mass times that acceleration: Newton’s famous F = ma. What makes our rockets so special is not that they accelerate at approximately this rate, as many obxts like cars, bullets, railguns, and even roller coasters frequently and easily surpass it. Rather, rockets are special because they sustain this acceleration for long periods of time in the same direction, enabling us to break the bonds of gravity and achieve escape velocity from Earth.
由于地球引力,我們所經(jīng)歷的加速度被稱為“1g”(發(fā)音為“伊寄”),它對所有物體施加的力等于我們的質(zhì)量乘以該加速度:即牛頓著名的F=ma。我們的火箭之所以如此特殊,并不是因為它們的加速度接近這個速度,許多物體,如汽車、子彈、軌道炮,甚至過山車,都經(jīng)常輕易地超過它。相反,火箭是特殊的,因為它們在同一個方向上長時間保持這種加速度,使我們能夠打破重力的束縛,實現(xiàn)從地球逃逸的速度。
由于地球引力,我們所經(jīng)歷的加速度被稱為“1g”(發(fā)音為“伊寄”),它對所有物體施加的力等于我們的質(zhì)量乘以該加速度:即牛頓著名的F=ma。我們的火箭之所以如此特殊,并不是因為它們的加速度接近這個速度,許多物體,如汽車、子彈、軌道炮,甚至過山車,都經(jīng)常輕易地超過它。相反,火箭是特殊的,因為它們在同一個方向上長時間保持這種加速度,使我們能夠打破重力的束縛,實現(xiàn)從地球逃逸的速度。
One of the greatest challenges facing human beings who wish to take long-term journeys in space is the biological effects of not having Earth’s gravity. Earth’s gravity is required for healthy development and maintenance of a human body, with our bodily functions literally failing us if we spend too long in space. Our bone densities drop; our musculature atrophies in significant ways; we experience “space blindness;” and even the International Space Station astronauts who are most diligent about doing hours of exercise a day for months are unable to support themselves for more than a few steps upon returning to Earth.
希望進行長時間太空旅行的人類面臨的最大挑戰(zhàn)之一是沒有地球引力的生物反應(yīng)。地球引力是人體健康發(fā)育和維持所必需的,如果我們在太空中呆得太久,我們的身體機能實際上就會衰退。我們的骨骼密度下降;我們的肌肉組織明顯萎縮;我們會經(jīng)歷“空間盲癥”。即使是國際空間站的宇航員,他們幾個月來每天都要勤奮地鍛煉幾個小時,但回到地球后也無法支撐自己多走幾步。
One way that challenge could be overcome is if we could sustain an acceleration of 1g not for a few minutes, propelling us into space, but continuously. A remarkable prediction of Einstein’s relativity — verified experimentally many times over — is that all obxts in the Universe can detect no difference between a constant acceleration and an acceleration due to gravity. If we could keep a spacecraft accelerating at 1g, there would be no physiological difference experienced by an astronaut on board that spacecraft as compared with a human in a stationary room on Earth.
克服這一挑戰(zhàn)的一個方法是,如果我們能夠持續(xù)1g的加速度,不是幾分鐘的時間,這只夠推動我們進入太空。而是持續(xù)不斷地保持這個速度。愛因斯坦的相對論有一個顯著的預(yù)測——實驗驗證了多次——宇宙中的所有物體都無法檢測到恒定加速度和重力加速度之間的差異。如果我們能使航天器保持1g的加速,那么在航天器上的宇航員與在地球上靜止的房間里的人在生理上不會有什么不同。
克服這一挑戰(zhàn)的一個方法是,如果我們能夠持續(xù)1g的加速度,不是幾分鐘的時間,這只夠推動我們進入太空。而是持續(xù)不斷地保持這個速度。愛因斯坦的相對論有一個顯著的預(yù)測——實驗驗證了多次——宇宙中的所有物體都無法檢測到恒定加速度和重力加速度之間的差異。如果我們能使航天器保持1g的加速,那么在航天器上的宇航員與在地球上靜止的房間里的人在生理上不會有什么不同。
It takes a leap of faith to presume that we might someday be able to achieve constant accelerations indefinitely, as that would necessitate having a limitless supply of fuel at our disposal. Even if we mastered matter-antimatter annihilation — a 100% efficient reaction — we are limited by the fuel we can bring on board, and we’d quickly hit a point of diminishing returns: the more fuel you bring, the more fuel you need to accelerate not only your spacecraft, but all the remaining fuel that’s on board as well.
假設(shè)我們有朝一日能夠無間斷地實現(xiàn)持續(xù)加速,這需要一種質(zhì)的飛躍,因為這就代表著我們擁有無限的燃料供應(yīng)。即使我們掌握了反物質(zhì)湮滅 - 一種100%有效的反應(yīng)(湮滅一旦發(fā)生,正反物質(zhì)的質(zhì)量將全部轉(zhuǎn)化為能量)- 我們也會受到我們能攜帶到飛船上的燃料數(shù)量的限制,我們很快就會達到一個收益遞減的點:你攜帶的燃料越多,你需要維持這個體量的燃料就越多,燃料不僅加速你的飛船的質(zhì)量,還加速飛船上所有剩余的燃料的質(zhì)量。
Still, there are many hopes that we could gather material for fuel on our journey. Ideas have included using a magnetic field to “scoop” charged particles into a rocket’s path, providing particles and antiparticles that could then be annihilated for propulsion. If dark matter turns out to be a specific type of particle that happens to be its own antiparticle — much like the common photon — then simply collecting it and annihilating it, if we could master that type of manipulation, could successfully supply a traveling spacecraft with all the fuel it needs for constant acceleration.
盡管如此,我們?nèi)杂泻艽笙M诼猛局惺占剂腺Y源。這些想法包括利用磁場將帶電粒子“舀”到火箭的軌道上,提供粒子和反粒子,然后這些粒子和反粒子可以被湮滅用于推進。如果暗物質(zhì)被證明是一種特殊類型的粒子,恰巧是它自己的反粒子——很像普通的光子——那么簡單地收集并湮滅它,如果我們能夠掌握這種操縱方式,就可以成功地為旅行的航天器提供恒速加速所需的所有燃料。
If it weren’t for Einstein’s relativity, you might think that, with each second that passes by, you’d simply increase your speed by another 9.8 m/s. If you started off at rest, it would only take you a little less than a year — about 354 days — to reach the speed of light: 299,792,458 m/s. Of course, that’s a physical impossibility, as no massive obxt can ever reach, much less exceed, the speed of light.
如果沒有愛因斯坦的相對論,你可能會想,每過一秒,你只需再增加9.8米/秒的速度。如果你在休息的時候出發(fā),只需要不到一年的時間——大約354天——就可以達到光速:299792458米/秒。當(dāng)然,這在物理上講是不可能的,因為沒有一個大型的物體能夠達到,更不用說超過光速了。
如果沒有愛因斯坦的相對論,你可能會想,每過一秒,你只需再增加9.8米/秒的速度。如果你在休息的時候出發(fā),只需要不到一年的時間——大約354天——就可以達到光速:299792458米/秒。當(dāng)然,這在物理上講是不可能的,因為沒有一個大型的物體能夠達到,更不用說超過光速了。
The way this would play out, in practice, is that your speed would increase by 9.8 m/s with each second that goes by, at least, initially. As you began to get close to the speed of light, reaching what physicists call “relativistic speeds” (where the effects of Einstein’s relativity become important), you’d start to experience two of relativity’s most famous effects: length contraction and time dilation.
實際上,這樣會導(dǎo)致的結(jié)果是,你的速度每過一秒就會增加9.8米/秒,至少在最初是這樣。當(dāng)你開始接近光速,達到物理學(xué)家所謂的“相對速度”(愛因斯坦的相對論效應(yīng)變得重要)時,你會開始體驗相對論最著名的兩個效應(yīng):長度收縮和時間膨脹。
實際上,這樣會導(dǎo)致的結(jié)果是,你的速度每過一秒就會增加9.8米/秒,至少在最初是這樣。當(dāng)你開始接近光速,達到物理學(xué)家所謂的“相對速度”(愛因斯坦的相對論效應(yīng)變得重要)時,你會開始體驗相對論最著名的兩個效應(yīng):長度收縮和時間膨脹。
Length contraction simply means that, in the direction an obxt travels, all of the distances it views will appear to be compressed. The amount of that contraction is related to how close to the speed of light it’s moving. For someone at rest with respect to the fast-moving obxt, the obxt itself appears compressed. But for someone aboard the fast-moving obxt, whether a particle, train, or spacecraft, the cosmic distances they’re attempting to traverse will be what’s contracted.
長度收縮簡而言之就是說,在對象移動的方向上,它所看到的所有距離都將被壓縮。收縮的程度與它運動的速度有多接近光速有關(guān)。對于相對于快速移動的對象處于靜止狀態(tài)的人來說,對象本身看起來是壓縮的。但是對于那些在快速移動的物體上的人來說,無論是粒子、火車還是宇宙飛船,他們試圖穿越的宇宙距離都是縮短的。
Because the speed of light is a constant for all observers, someone moving through space (relative to the stars, galaxies, etc.) at close to the speed of light will experience time passing more slowly, as well. The best illustration is to imagine a special kind of clock: one that bounces a single photon between two mirrors. If a “second” corresponds to one round-trip journey between the mirrors, a moving obxt will require more time for that journey to happen. From the perspective of someone at rest, time will appear to slow down significantly for the spacecraft the closer to the speed of light they get.
因為光速對于所有觀察者來說都是恒定的,所以以接近光速在太空中移動的人(相對于恒星、星系等)也會經(jīng)歷更慢的時間流逝。最好的例子是想象一種特殊的時鐘:在兩個鏡子之間反彈一個光子的時鐘。如果“1秒”對應(yīng)于兩個鏡面之間的一次往返行程,則移動的物體將需要更多的時間來完成該行程。從靜止的人的角度來看,航天器的時間似乎會隨著接近光速而明顯減慢。
因為光速對于所有觀察者來說都是恒定的,所以以接近光速在太空中移動的人(相對于恒星、星系等)也會經(jīng)歷更慢的時間流逝。最好的例子是想象一種特殊的時鐘:在兩個鏡子之間反彈一個光子的時鐘。如果“1秒”對應(yīng)于兩個鏡面之間的一次往返行程,則移動的物體將需要更多的時間來完成該行程。從靜止的人的角度來看,航天器的時間似乎會隨著接近光速而明顯減慢。
With the same, constant force applied, your speed would begin to asymptote: approaching, but never quite reaching, the speed of light. But the closer to that unreachable limit you get, with every extra percentage point as you go from 99% to 99.9% to 99.999% and so on, lengths contract and time dilates even more severely.
在同樣的、恒定的力作用下,你的速度將開始逐漸接近光速:接近但從未完全達到光速。但當(dāng)你越接近那無法達到的極限,從99%到99.9%再到99.999%再增加一個百分點,如此類推,長度就會縮短,時間會更嚴重地膨脹。
Of course, this is a bad plan. You don’t want to be moving at 99.9999+% the speed of light when you arrive at your destination; you want to have slowed back down. So the smart plan would be to accelerate at 1g for the first half of your journey, then fire your thrusters in the opposite direction, decelerating at 1g for the second half. This way, when you reach your destination, you won’t become the ultimate cosmic bug-on-a-windshield.
當(dāng)然,這是一個糟糕的計劃。當(dāng)你快到達目的地時,你不想還在以99.9999+%的光速移動;你想放慢速度。因此,明智的計劃是在你的旅程的前半段以1g的速度加速,然后朝相反的方向發(fā)射推進器,在下半段以1g的速度減速。這樣,當(dāng)你到達目的地時,你就不會成為擋風(fēng)玻璃上的終極宇宙小飛蟲。
當(dāng)然,這是一個糟糕的計劃。當(dāng)你快到達目的地時,你不想還在以99.9999+%的光速移動;你想放慢速度。因此,明智的計劃是在你的旅程的前半段以1g的速度加速,然后朝相反的方向發(fā)射推進器,在下半段以1g的速度減速。這樣,當(dāng)你到達目的地時,你就不會成為擋風(fēng)玻璃上的終極宇宙小飛蟲。
Adhering to this plan, over the first part of your journey, time passes almost at the same rate as it does for someone on Earth. If you traveled to the inner Oort cloud, it would take you about a year. If you then reversed course to return home, you’d be back on Earth after about two years total. Someone on Earth would have seen more time elapse, but only by a few weeks.
如果堅持這個計劃,那么在你旅途的上半程,時間的流逝速度幾乎和在地球上的任意某個人一樣快。如果你想去奧爾特云內(nèi)旅行,大約需要一年的時間。若你們倒轉(zhuǎn)方向回家,你們將在大約兩年后回到地球上。地球上的時間會過去更久,但只多出幾個星期。
如果堅持這個計劃,那么在你旅途的上半程,時間的流逝速度幾乎和在地球上的任意某個人一樣快。如果你想去奧爾特云內(nèi)旅行,大約需要一年的時間。若你們倒轉(zhuǎn)方向回家,你們將在大約兩年后回到地球上。地球上的時間會過去更久,但只多出幾個星期。
But the farther you went, the more severe those differences would be. A journey to Proxima Centauri, the nearest star system to the Sun, would take about 4 years to reach, which is remarkable considering it’s 4.3 light-years away. The fact that lengths contract and time dilates means that you experience less time than the distance you’re actually traversing would indicate. Someone back home on Earth, meanwhile, would age about an extra full year over that same journey.
但你走得越遠,這些差異就越嚴重。距離太陽最近的恒星系統(tǒng)比鄰星大約需要4年才能到達,考慮到它距離太陽4.3光年,這會是一次非凡的旅行。長度縮短而時間膨脹的事實意味著你經(jīng)歷的時間比你實際穿越的距離要少。同時,回到地球的人在同一次旅行中會多衰老一整年。
但你走得越遠,這些差異就越嚴重。距離太陽最近的恒星系統(tǒng)比鄰星大約需要4年才能到達,考慮到它距離太陽4.3光年,這會是一次非凡的旅行。長度縮短而時間膨脹的事實意味著你經(jīng)歷的時間比你實際穿越的距離要少。同時,回到地球的人在同一次旅行中會多衰老一整年。
The brightest star in Earth’s sky today, Sirius, is located about 8.6 light-years away. If you launched yourself on a trajectory to Sirius and accelerated at that continuous 1g for the entire journey, you’d reach it in just about 5 years. Remarkably, it only takes about an extra year for you, the traveler, to reach a star that’s twice as distant as Proxima Centauri, illustrating the power of Einstein’s relativity to make the impractical accessible if you can keep on accelerating.
今天地球天空中最亮的恒星,天狼星,位于大約8.6光年之外。如果你將自己發(fā)射到天狼星的軌道上,并在整個旅程中以持續(xù)1g的速度加速,你將在大約5年內(nèi)到達它。值得注意的是,作為旅行者,你只需再花大約一年的時間就能到達一顆距離是比鄰星兩倍的恒星,這說明了愛因斯坦相對論的力量,如果你能持續(xù)加速,就可以實現(xiàn)不切實際的目標。
And if we look to larger and larger scales, it takes proportionately less additional time to traverse these great distances. The enormous Orion Nebula, located more than 1,000 light-years away, would be reached in just about 15 years from the perspective of a traveler aboard that spacecraft.
如果我們往更大的尺度上來看,穿越這些遙遠的距離所需的額外時間就會相應(yīng)減少。巨大的獵戶座星云位于1000光年之外,從飛船上的旅行者的視角來看,他們將在大約15年內(nèi)到達。
如果我們往更大的尺度上來看,穿越這些遙遠的距離所需的額外時間就會相應(yīng)減少。巨大的獵戶座星云位于1000光年之外,從飛船上的旅行者的視角來看,他們將在大約15年內(nèi)到達。
Looking even farther afield, you could reach the closest supermassive black hole — Sagittarius A* at the Milky Way’s center — in about 20 years, despite the fact that it’s ~27,000 light-years away.
放眼更遠的地方,你可以在大約20年內(nèi)到達最近的超大質(zhì)量黑洞——銀河系中心的人馬座A*,盡管它距離我們約27000光年。
放眼更遠的地方,你可以在大約20年內(nèi)到達最近的超大質(zhì)量黑洞——銀河系中心的人馬座A*,盡管它距離我們約27000光年。
And the Andromeda Galaxy, located a whopping 2.5 million light-years from Earth, could be reachable in only 30 years, assuming you continued to accelerate throughout the entire journey. Of course, someone back on Earth would experience the full 2.5 million years passing during that interval, so don’t expect to come back home.
而距離地球250萬光年的仙女座星系,如果你在整個旅程中繼續(xù)加速,只需30年就可以到達。當(dāng)然,地球上的某些人會在這段時間內(nèi)經(jīng)歷整整250萬年的時間,所以不要指望你還能回到家里。
而距離地球250萬光年的仙女座星系,如果你在整個旅程中繼續(xù)加速,只需30年就可以到達。當(dāng)然,地球上的某些人會在這段時間內(nèi)經(jīng)歷整整250萬年的時間,所以不要指望你還能回到家里。
In fact, so long as you kept adhering to this plan, you could choose any destination at all that’s presently within 18 billion light-years of us, and reach it after merely 45 years, max, had passed. (At least, from your frx of reference aboard the spacecraft!) That ~18 billion light-year figure is the limit of the reachable Universe, set by the expansion of the Universe and the effects of dark energy. Everything beyond that point is currently unreachable with our present understanding of physics, meaning that ~94% of all the galaxies in the Universe are forever beyond our cosmic horizon.
事實上,只要你堅持這個計劃,你就可以選擇目前距離我們180億光年以內(nèi)的任何一個目的地,并在僅僅40多年后到達它,最多45年 ( 從你在宇宙飛船上的參照系來看?。┻@180億光年的數(shù)字是可視宇宙的極限,由宇宙的膨脹和暗能量的影響決定。在我們目前對物理學(xué)的理解中,超出這一點的一切都是不可能實現(xiàn)的,這意味著宇宙中約94%的星系永遠超出了我們的宇宙視界。
The only reason we can even see them is because light that left those galaxies long ago is just arriving today; the light that leaves them now, 13.8 billion years after the Big Bang, will never reach us. Similarly, the only light they can see from us was emitted before human beings ever evolved; the light leaving us right now will never reach them.
我們能看到它們的唯一原因是因為很久以前離開這些星系的光今天才剛剛到達;而現(xiàn)在才離開它們的光,在宇宙大爆炸138億年后,永遠不會到達我們這里。同樣地,他們能從我們身上看到的唯一的光是在人類誕生之前發(fā)出的;現(xiàn)在離開我們的光永遠無法到達他們。
我們能看到它們的唯一原因是因為很久以前離開這些星系的光今天才剛剛到達;而現(xiàn)在才離開它們的光,在宇宙大爆炸138億年后,永遠不會到達我們這里。同樣地,他們能從我們身上看到的唯一的光是在人類誕生之前發(fā)出的;現(xiàn)在離開我們的光永遠無法到達他們。
Still, the galaxies that are within 18 billion light-years of us today, estimated to number around 100 billion or so, are not only reachable, but reachable after just 45 years. Unfortunately, even if you brought enough fuel, a return trip would be impossible, as dark energy would drive your original location so far away that you could never return to it.
盡管如此,今天距離我們180億光年以內(nèi)的星系,估計有1000億左右,不僅可以到達,而且只需45年就可以到達。不幸的是,即使你帶了足夠的燃料,回程也是不可能的,因為暗能量會把你的出發(fā)點推得很遠,以至于你永遠無法回到那里。
盡管如此,今天距離我們180億光年以內(nèi)的星系,估計有1000億左右,不僅可以到達,而且只需45年就可以到達。不幸的是,即使你帶了足夠的燃料,回程也是不可能的,因為暗能量會把你的出發(fā)點推得很遠,以至于你永遠無法回到那里。
Even though we think of interstellar or intergalactic journeys as being unfeasible for human beings due to the enormous timescales involved — after all, it will take the Voyager spacecrafts nearly 100,000 years to traverse the equivalent distance to Proxima Centauri — that’s only because of our present technological limitations. If we were able to create a spacecraft capable of a constant, sustained acceleration of 1g for about 45 years, we could have our pick of where we’d choose to go from 100 billion galaxies within 18 billion light-years of us.
盡管我們認為星際或星系間的旅行對于人類來說是不可行的,因為涉及到巨大的時間尺度——畢竟,“旅行者”號宇宙飛船需要將近10萬年的時間才能到達比鄰星——這僅僅是因為我們目前的技術(shù)限制。如果我們能夠制造出一個能夠在45年內(nèi)保持1g恒定加速度的航天器,我們可以從180億光年內(nèi)的1000億個星系中選擇我們要去的任意地方。
The only downside is that you’ll never be able to go home again. The fact that time dilates and lengths contract are the physical phenomena that enable us to travel those great distances, but only for those of us who get aboard that spacecraft. Here on Earth, time will continue to pass as normal; it will take millions or even billions of years from our perspective before that spacecraft arrives at its destination. If we never ran out of thrust, we could hypothetically reach anywhere in the Universe that a photon emitted today could reach. Just beware that if you were to go far enough, by the time you came home, humanity, life on Earth, and even the Sun will all have died out. In the end, though, the journey truly is the most important part of the story.
唯一的缺點是你再也不能回家了。事實上,時間的膨脹和長度的收縮是物理現(xiàn)象,使我們能夠旅行這些遙遠的距離,但只對我們這些登上宇宙飛船的人來說。在地球上,時間將一如既往地流逝;從我們的角度來看,宇宙飛船到達目的地需要數(shù)百萬年甚至數(shù)十億年的時間。如果我們有無限的推力,我們可以到達宇宙中今天發(fā)射的光子可以到達的任何地方。只是小心,如果你走得夠遠,到你回家的時候,人類,地球上的生命,甚至太陽都將湮滅了。但無論如何,過程才是一個故事最重要的部分,而不是結(jié)果。
唯一的缺點是你再也不能回家了。事實上,時間的膨脹和長度的收縮是物理現(xiàn)象,使我們能夠旅行這些遙遠的距離,但只對我們這些登上宇宙飛船的人來說。在地球上,時間將一如既往地流逝;從我們的角度來看,宇宙飛船到達目的地需要數(shù)百萬年甚至數(shù)十億年的時間。如果我們有無限的推力,我們可以到達宇宙中今天發(fā)射的光子可以到達的任何地方。只是小心,如果你走得夠遠,到你回家的時候,人類,地球上的生命,甚至太陽都將湮滅了。但無論如何,過程才是一個故事最重要的部分,而不是結(jié)果。
評論翻譯
很贊 ( 3 )
收藏
This is an awesome article on this exact topic!
這是一篇關(guān)于這個主題的很棒的文章!
原創(chuàng)翻譯:龍騰網(wǎng) http://nxnpts.cn 轉(zhuǎn)載請注明出處
That was great! They explained it so well that o actually feel like I have a very small grasp of Einstein’s theory...
太棒了!他們解釋得如此之好,以至于我覺得我對愛因斯坦的理論只有一點點的了解。。。
原創(chuàng)翻譯:龍騰網(wǎng) http://nxnpts.cn 轉(zhuǎn)載請注明出處
The author’s blog is excellent: Starts with a Bang
這個作者的博客很棒:Starts with a Bang(從大爆炸開始)
Jesus, that was wild. Thanks!
Edit: traveling 18 BILLION lightyears away would only take 45 years
天哪,那太瘋狂了。謝謝!
編輯:180億光年的旅行只需要花45年
原創(chuàng)翻譯:龍騰網(wǎng) http://nxnpts.cn 轉(zhuǎn)載請注明出處
I may have misinterpreted your comment, I'm curious where you came up with the number. Are you including time it would take to accelerate to lightspeed?
It's from the article lixed in the parent comment. Basically, you'd travel 18 billion light years in 45 years if you could manage to maintain 1g of acceleration that whole time.
“我可能誤解了你的評論,我很好奇你是從哪里得出這個數(shù)字的。你是否包括加速到光速所需的時間?”
這是來自這篇文章中的結(jié)論?;旧?,如果你能在45年內(nèi)保持1g的加速度,你將能在180億光年內(nèi)任意距離旅行。
Ah. Is this taking into account the requirement of slowing back down when you arrive at your designation? :P interesting though
啊。你是否考慮到你到達指定地點前需要減速的要求?不過還是很有趣
I'd guess yes, but not taking into account the speed limit of course
我想是的,但當(dāng)然,是不考慮有速度限制的情況下
The article considers half of the trip is speeding up and half of the trip is slowing down, so there is 1g the whole time, just in different directions
文章認為一半的行程在加速,一半的行程在減速,所以整個過程中1g的加速度始終存在,只是在往不同的方向上施加
I can’t tell if you’re trolling or not because you just typed a whole bunch of gibberish
我不知道你是不是在釣魚,因為你剛打了一大堆胡言亂語
It can take any amount of time you’d like it to if you have enough energy.
如果你有足夠的精力,你在這上面花再多時間都不過分。
Thx it's a cool article, I always thought that you would need 15 years to travel 15 light years but you could travel the entire universe in just 45 years. I knew about time dilation but this made clearer a lot of things
謝謝這是一篇很酷的文章,我一直認為你需要15年才能旅行15光年,但沒想到你可以在45年內(nèi)旅行整個宇宙。我知道時間會膨脹,但這讓很多事情變得清晰明了
Wow! Leaving this comment here so I can repeatedly come back to this article when I inevitably lose my understanding of the topic!
哇!我把這篇評論留在這里,這樣當(dāng)我搞不明白其中原理時,我就可以反復(fù)點回到這篇文章!
Really interesting article. So if it only takes 354 days of 1g to reach the speed of light, I suppose you would need to alternate accelerating and decelerating after that point. So every once in a while you need to prepare for a short period of zero G and then the inside of the ship rotates and starts decelerating at 1g but now you’re upside down and it feels like 1g again. Fun to imagine.
非常有趣的文章。因此,如果只需要354天1g加速就可以達到光速,我想你需要在這一點之后交替加速和減速。所以每隔一段時間,你需要準備一個短時間的零G,然后飛船轉(zhuǎn)向,開始減速,再次達到1g,但現(xiàn)在你顛倒過來了,感覺又回到了1g。想想就很神奇。
It gets weird because as you approach the speed of light it matters where the observer is.
As I understand it...
From the outside the ship would appear to be accelerating less and less, but to the crew of the ship they would feel like they are still accelerating past the speed of light. From the perspective of the outside observer the trip takes thousands of years but from the crews perspective it only takes 45 years.
The example that helped me was the pingpong ball explanation but I don't think I could explain it well through text and can't remember the video that included it.
這很奇怪,因為當(dāng)你接近光速時,觀察者處于什么地方很重要。
據(jù)我所知。。。
從外部看,飛船的加速似乎越來越慢,但對飛船上的船員來說,他們會覺得他們?nèi)匀辉诩铀?,甚至超過光速。從外部觀察者的角度來看,這次旅行需要數(shù)千年的時間,但從船員的角度來看,只需要45年。
幫助我理解的例子是乒乓球原理,但我不認為我能通過文字很好地解釋它,也記不起包含它的視頻。
Why not just keep cruising?
為什么不繼續(xù)航行下去呢?
Dude that article has so many ads on it I only had about 1/4 of my ph screen to read the article, and I still had to scroll past other adds…..
哥們,那篇文章上有這么多廣告,我只有大約1/4的手機屏幕能用來閱讀這篇文章,而且我還必須往下滾動瀏覽其它內(nèi)容。。。(瘋狂點到廣告)
This is why ad and scxt blockers exist.
這就是為什么AdBlock存在。
Amazing article. Thanks for sharing.
驚人的文章。謝謝分享。
Interesting! So if the people on a spacecraft couldn't see outside, then just keeping them on earth would feel the same as accelerating at 1g? Do you get time dilation effects just from being at 1g?
Edit: I see it's called "gravitational time dilation". I can't tell how much time dilation you would get on earth compared to a spaceship moving at 1g constant. The same?
太有意思了!所以,如果太空船上的人看不見外面,那么如果把他們?nèi)釉诘厍蛏?,他們?nèi)匀粫杏X就像在1g加速一樣?你是不是在1g下的時候就得到了時間膨脹效應(yīng)?
編輯:我知道這叫做“引力時間膨脹”。我不知道和以1g的常數(shù)運行的宇宙飛船相比,地球上的時間膨脹得會有多厲害。它們一樣嗎?
原創(chuàng)翻譯:龍騰網(wǎng) http://nxnpts.cn 轉(zhuǎn)載請注明出處
Presumably to go from 0 to 99.99999999% of light speed would be an absurd flesh destroying acceleration unless spread over a long time? So really we would have to add months? Years? Onto any calculation to not turn the pilots into a pile of goop?
假設(shè)從光速的0%到99.9999999%是一個荒謬的會導(dǎo)致肉身毀滅的加速度,除非中間經(jīng)歷很長時間?那么我們真的要再加幾個月嗎?還是幾年?有沒有想過不把宇航員當(dāng)成是傻瓜?
Hi there, I am a physicist! No one has given you an actual answer yet except for one person who used classical mechanics instead, which unfortunately will not work at all in this case. Here is the full, relativistic answer you're looking for:
The amount of time it would take to achieve a speed of 99.99999999% the speed of light by accelerating at one g continuously is 11.5 years.
A few technical notes:
This amount of time is the time experienced by the passengers of the ship (which will be different from the amount of time passed on Earth / the departure location).
This speed is the relative speed between the ship and Earth / the departure location.
I assume the ship continuously accelerates at one g.
The equation used to get this answer is quite simple once you work it out (which is the hard part). You can plug in your own values to see how the answer changes for a variety of options.
Time = (c/g)*Tanh-1 (v/c)
v = speed of ship as measured by Earth / departure location (which is assumed to be some inertial reference point)
c = speed of light
g = Earth's gravitational acceleration
Tanh-1 = inverse hyperbolic tangent function
Edit: In case anyone is curious, it only takes 4.8 years to get to 99.99% light speed and only 1.4 years to get to 90% light speed. Also, this is obviously purely hypothetical since the amount of energy required to fuel a ship and get it up to such speeds would be totally insane. Also colliding with an interstellar mote of dust at such speeds would be catastrophic!
Another Quick Edit: In case anyone is reading this and wondering why the amount of time (11.5 years) is more than the ~1 year answer coming from classical mechanics (which is an excellent thing to wonder) I responded to another comment about this with an explanation here.
你們好,我是一名物理學(xué)家!除了使用經(jīng)典力學(xué)理論外,還沒有人能給你一個準確的答案,不幸的是,在這種情況下,經(jīng)典力學(xué)根本不起作用。以下是您正在尋找的完整的相對論答案:
達到99.9999999%的光速所需的時間:持續(xù)1g加速度下需要11.5年。
一些技術(shù)上的注意事項:
這段時間是船上乘客經(jīng)歷的時間(與地球上/出發(fā)地點經(jīng)過的時間不同)。
該速度是飛船與地球/出發(fā)地點之間的相對速度。
我假設(shè)飛船以1g的速度持續(xù)加速。
得到這個答案的方程式很簡單,只要你算出它(這是最難的部分)。您可以插入自己的值,查看各種選項的答案如何變化。
時間=(c/g)*Tanh-1(v/c)
v=通過地球/出發(fā)位置(假定為某個慣性參考點)測量的飛船速度
c=光速
g=地球重力加速度
Tanh-1=反雙曲正切函數(shù)
編輯:有人好奇,真的只需要4.8年就可以達到99.99%的光速,只需要1.4年就可以達到90%的光速嗎。而這顯然是純粹的假設(shè),因為為一艘飛船提供燃料并使其達到這樣的速度所需的能量是不可思議的。同樣,以這樣的速度與星際塵埃發(fā)生碰撞將是災(zāi)難性的!
2次編輯:如果有人讀到這篇文章,想知道為什么所需時間(11.5年)比經(jīng)典力學(xué)的1年答案還要長(這其實是一件非常值得懷疑的事情),我在這里的另一條評論里進行了解釋。
At last.
This is the first time I see an use for Hyperbolic Arctangent.
這是我第一次看到雙曲反正切的用法。
I like Hyperbolic Arctangent, but only their first two albums...
我喜歡雙曲反正切,但只有它們的前兩部專輯(同名樂隊)。
You can't be serious! "The Value of Derivatives" is a masterpiece!
你沒在開玩笑吧!”導(dǎo)函數(shù)值“是偉大的杰作!
I preferred Fourier transform.
我更喜歡傅里葉變換。
Oh man, that one lyric in it: "any curve is just a series of sines"
Still gives me the chills.
哦,兄弟,里面有一句歌詞:“任何曲線都只是一系列正弦”
依然能讓我起雞皮疙瘩。
I used to be a fan, but now I'm an air conditioner
我本來是個電風(fēng)扇,但現(xiàn)在我是臺空調(diào)了
As you approach light speed the length of time perceived by the astronauts approaches zero.
當(dāng)你接近光速時,宇航員感知到的時間長度接近于零。
I think the issue that people don't quite understand is the word 'perceived'. It's not just perceived, it IS like that. It's just as true and real as 'perceiving' time is now, while sitting here. There isn't even a true 'timespeed' in the universe.
我認為人們不太理解的問題是“感知”這個詞。這不僅僅是感到那樣,而是現(xiàn)實就是那樣。這就像坐在這里“感知”時間一樣真實。宇宙中甚至沒有真正的“時間速度”。(即1秒為什么是滴答一下的時間長度?只是人類設(shè)定的罷了)
So will my body age even if I don't perceive it moving at lightspeed? If it doesn't then perceive is not a good word since it involves lack of awareness of things happening like the body decaying.
那么,如果我感覺不到我在以光速運動,我的身體還會衰老嗎?如果不會,那么感知就不是一個好詞,因為它涉及到對發(fā)生的事情缺乏意識,比如身體爛掉了。
Correct. It has nothing to do with human awareness. If you started a stopwatch at the moment you travel with lightspeed it would still be at 00:00 when arrive at your destination.
( a stopwatch started at the same time on Earth would be at +100.000 years though)
Thats why such a spaceship would also be the ultimate fast-forward machine. Imagine blxing and 100.000 years has past on earth. It's mind-boggling.
對的。它與人類的意識無關(guān)。如果你在光速旅行的那一刻啟動了秒表,那么當(dāng)你到達目的地時,它仍然是在00:00。
(但是,地球上同時啟動的秒表已經(jīng)過去10萬年了)
這就是為什么這樣的宇宙飛船也將是終極快進機器的原因。想象你眨了下眼,地球上已經(jīng)過去了10萬年。令人難以置信。
Hang on, that makes it sound like Light travels in an instant... then how come there are parts of the universe we can't see because the light hasn't reached us yet?
Edit: Thank you for all the answers, unfortunately the part I'm still confused in is how something that is instantaneous, can then be slowed down and observed as moving (from our perspective). If something is instantaneous then it was never moving in the first place no?
等等,這聽起來像是光在瞬間傳播。。。那為什么宇宙中有些部分我們看不見,那里的光還沒有到達我們身邊?
編輯:謝謝你所有的答案,不幸的是,我仍然困惑的是,一瞬間發(fā)生的事是如何被減慢速度,并在移動中被觀察到的(從我們的角度)。如果某個東西是發(fā)生在一瞬間的,那么它從一開始就沒在動,不是嗎?
From it's own perspective, light does travel in an instant. But for us observing the light, it travels at what we call light speed.
As to why there are parts of the universe that light hasn't reached us yet the answer has two possibilities:
It is coming from far away and it just hasn't had enough time (from our perspective to reach us yet). If it's coming from 100k light years away, it will take, well 100k years to reach here, counting with clocks on earth. It will take 0 seconds counting with the light's personal clock, if you could imagine one.
The source of the light is so extremely far away, that the space between us and the source is expanding faster than the speed of light. So even though the light is travelling towards here, there is always more space to travel through and thus it will never reach us.
從它自己的角度來看,光確實在瞬間傳播。但對于我們觀察光的人來說,它以我們稱之為光速的速度傳播。
至于為什么宇宙中有些部分光還沒有到達我們這里,答案有兩種可能:
它來自非常遙遠的地方,只是還沒有足夠的時間(從我們的角度來看)到達我們這里。如果它來自10萬光年之外,用地球上的時鐘計算,它將需要10萬年才能到達這里。如果你能想象的話,用光自己的時間計數(shù)只需要0秒。
而光源是如此的遙遠,以至于我們和光源之間的空間以超過光速的速度擴展。因此,即使光正在向這里傳播,但總有更多的空間可以傳播,因此它永遠不會到達我們。
And that will apply to everything outside of our cluster (if I remember the right size and term). Stars we see now won't be visible to the Earth in the future. In the distant future space between clusters will be so great that they will basically be gone to us.
這將適用于星團之外的所有事物(如果我記得正確的大小和術(shù)語)。我們現(xiàn)在能看到的星星在未來的地球?qū)⒖床坏?。在遙遠的未來,星團之間的空間將是如此巨大,以至于它們基本上都會離我們遠去。
Wait! How can the universe be expanding away from us at faster than the speed of light when the speed of light is the fastest speed in the universe? Is it because we are also moving away from it in the opposite direction at the speed of light, effectively making the expansion twice the speed of light? Hmm… now if we could make relativity drives that move obxts towards us as we travel towards them, but only in a pseudo bubble that doesn’t effect real space time.
等等!當(dāng)光速是宇宙中最快的速度時,宇宙怎么能以比光速更快的速度從我們身邊擴展開來呢?是不是因為我們也在以光速向相反的方向移動,有效地使膨脹速度達到光速的兩倍?嗯……那么,如果我們能制造相對驅(qū)動力,當(dāng)我們朝著物體移動時,它能把物體移向我們,但只能在一個不會影響真實時空的偽氣泡中。
Assuming they actually move at light speed it would feel like zero seconds since the time compressions approaches infinity as the speed approaches light speed. Unfortunately reaching lightspeed takes infinity energy.
假設(shè)它們以光速運動,感覺就像過去了0秒鐘,因為當(dāng)速度接近光速時,時間壓縮接近無窮大。不幸的是,達到光速需要無限的能量。
Why does reaching lightspeed take infinite energy? Also why is the speed of light the fastest anything can travel at?
為什么達到光速需要無限的能量?還有,為什么光速是任何物體所能達到的最快速度?
Photons have no mass, but they do carry energy. So basically what you have is something with infinite energy compared to it's mass.
光子沒有質(zhì)量,但它們攜帶能量。所以基本上,你所擁有的是一個無限能量的物體,和它的質(zhì)量相比。
Layman wondering: if gravitational attraction is effectively a property of mass, why are photons, a massless particle effected by gravity? Does the energy a photon contains act like pseudo/phantom mass or something entirely different?
外行提問:如果引力實際上是質(zhì)量的一種屬性,為什么光子,一種無質(zhì)量的粒子會受到引力的影響?光子包含的能量是像偽質(zhì)量/虛幻質(zhì)量還是完全不同的東西?
原創(chuàng)翻譯:龍騰網(wǎng) http://nxnpts.cn 轉(zhuǎn)載請注明出處
Mass curves space-time so the photon on a straight path get influenced away from where it was going. More mass=more curvature.
質(zhì)量使時空彎曲,因此直線路徑上的光子會受到影響,遠離其前進方向。質(zhì)量越大=曲率越大。
Photons aren't attracted to gravity per se. What happens is that gravity kind of "bends" the space towards it. From the perspective of the photon, it's just moving forward, it's just that it's path (space) is affected by gravity
光子本身不會被重力吸引。真正發(fā)生的是重力使空間向它“彎曲”。從光子的角度看,它只是向前移動,它的路徑(空間)受到重力的影響
Cool thing is, that's exactly how gravity works for things with mass as well.
很酷的一點是,重力對有質(zhì)量的物體也是如此。(所以我往前走不是我在路上走,是路在朝我走???)
Thank you. I think I was only half-remembering high school physics and got stuck with Newtonian stuff.
非常感謝。我想我只記得高中物理學(xué)過的一半東西,卻被牛頓的東西搞暈了了。
Few answers here but none have hit the nail on the head. Gravity isn't a force in the sense that we think of it, it is a result of the warping (bending) of space time. From the photons perspective it is traveling in a straight line through space, it is the space in which the photon is traveling through itself which moves, as the mass of the obxt is pulling spacetime itself toward it.
The only way I can think to explain it is imagine two cats on a bed, the first cat drops down off the side of the bed and has its claws on the bedsheet, dragging the bedsheet to the floor, and the 2nd cat with it. From the first cats perspective the 2nd cat has fallen. From the perspective of the 2nd cat however, he's not moving. He's sat on the bedsheet and his position on the bedsheet hasn't changed, but the bedsheet itself has been dragged away taking him with it, and changed it's position relative to the room, while he still maintains his place on the bedsheet.
The bedsheet is space time. Cat number 1 is mass, the bedsheet is space (spacetime), and cat 2 is the photon.
這里的答案很多,但沒有一個是一針見血的。重力不是我們想象中的一種力,它是時空扭曲(彎曲)的結(jié)果。從光子的角度來看,它在空間中以直線運動,當(dāng)物體的質(zhì)量將時空自身拉向它時,光子在空間中通過自身運動。
我能想到的唯一解釋是:想象兩只貓?zhí)稍谝粡埓采?,第一只貓從床邊掉下來,爪子在床單上,把床單拖到地板上,然后床單把第二只貓一起帶下來了。從第一只貓的角度來看,第二只貓已?jīng)掉下來了。然而,從第二只貓的角度來看,它并沒有移動。它還是坐在床單上,它在床單上的位置沒有改變,但床單本身被拖走了,帶走了它,改變了床單相對于房間的位置,而第二只貓本身仍然保持在床單上的位置。
這里的床單代表時空。第一只貓代表質(zhì)量,床單是空間(時空),第二只貓代表光子。
原創(chuàng)翻譯:龍騰網(wǎng) http://nxnpts.cn 轉(zhuǎn)載請注明出處